Advertisement

Sleep duration and disturbance are associated with orthostatic heart rate recovery: Findings from the Irish Longitudinal Study on Ageing

Published:October 07, 2022DOI:https://doi.org/10.1016/j.sleh.2022.08.002

      Abstract

      Objective

      To examine a novel measurement of autonomic innervation, the early heart rate response to orthostasis, in relation to sleep duration and disturbance (actigraphy-based and self-reported) in healthy older adults.

      Design

      Cross-sectional analyses of a nationally representative prospective cohort study, the Irish Longitudinal Study on Ageing (TILDA).

      Participants

      Nine hundred sixty community-dwelling adults aged 50 and over (mean age 65.6 ± 8.1; 53% women).

      Measurement

      Orthostatic heart rate response was measured during an active stand test. Beat-to-beat heart rate was monitored over 3 minutes using noninvasive digital photoplethysmography. Mean values at each 10-second time point after standing were generated and differences from baseline at each time point were used for analysis. Actigraphy-based sleep measures were extracted from wrist-worn GENEactiv devices; self-reported sleep measures using interview questions.

      Results

      Linear mixed-effects regression analyses, with inclusion of a large number of confounders, show that self-reported sleep duration and actigraphy-based sleep duration and disturbance were associated with altered orthostatic heart rate response, particularly within the first 20 seconds poststanding. Self-reported short sleep (β = -0.06; 95% confidence interval [CI]: -0.11, -0.01) and long sleep (β = -0.15; 95% CI: -0.24, -0.05) and actigraphy-based short sleep (β = -0.08; 95% CI: -0.14, -0.01) were characterized by a smaller increase at 10 seconds (p < .01). Actigraphy-based short sleep (β = 0.15; 95% CI: 0.08, 0.22) and sleep disturbance (β = 0.04; 95% CI: 0.02, 0.06) were associated with a slower return toward baseline at 20 seconds (p < .001).

      Conclusions

      Our findings suggest sympathetic dysregulation, impaired vagal reactivation, and/or decreased baroreceptor sensitivity in the presence of shortened or disturbed sleep.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Sleep Health: Journal of the National Sleep Foundation
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Itani O
        • Jike M.
        • Watanabe N.
        • Kaneita Y.
        Short sleep duration and health outcomes: a systematic review, meta-analysis, and meta-regression.
        Sleep Med. 2017; 32: 246-256https://doi.org/10.1016/j.sleep.2016.08.006
        • Jike M
        • Itani O.
        • Watanabe N.
        • Buysse DJ.
        • Kaneita Y.
        Long sleep duration and health outcomes: a systematic review, meta-analysis and meta-regression.
        Sleep Med Rev. 2018; 39: 25-36https://doi.org/10.1016/j.smrv.2017.06.011
        • Tsuji H
        • Venditti FJ.
        • Manders ES.
        • et al.
        Reduced heart rate variability and mortality risk in an elderly cohort. The Framingham Heart Study.
        Circulation. 1994; 90: 878-883https://doi.org/10.1161/01.cir.90.2.878
        • Nano MM
        • Fonseca P.
        • Vullings R.
        • Aarts R.M.
        Measures of cardiovascular autonomic activity in insomnia disorder: a systematic review.
        PLoS One. 2017; 12.e0186716https://doi.org/10.1371/journal.pone.0186716
        • Mallien J
        • Isenmann S.
        • Mrazek A.
        • Haensch C.A.
        Sleep disturbances and autonomic dysfunction in patients with postural orthostatic tachycardia syndrome.
        Front Neurol. 2014; 5: 118https://doi.org/10.3389/fneur.2014.00118
        • Bourdillon N
        • Jeanneret F.
        • Nilchian M.
        • Albertoni P.
        • Ha P.
        • Millet G.P.
        Sleep deprivation deteriorates heart rate variability and photoplethysmography.
        Front Neurosci. 2021; 15: 310https://doi.org/10.3389/fnins.2021.642548
        • Barnett KJ.
        The effects of a poor night sleep on mood, cognitive, autonomic and electrophysiological measures.
        J Integr Neurosci. 2008; 7: 405-420https://doi.org/10.1142/S0219635208001903
        • Chen HC
        • Hsu N.W.
        • Chou P.
        The association between extreme sleep duration and cardiac autonomic control in community-dwelling older adults: The Yilan Study, Taiwan.
        J Gerontol Series A. 2017; 72: 929-936https://doi.org/10.1093/gerona/glx045
        • Holmes AL
        • Burgess H.J.
        • Dawson D.
        Effects of sleep pressure on endogenous cardiac autonomic activity and body temperature.
        J Appl Physiol. 2002; 92: 2578-2584https://doi.org/10.1152/japplphysiol.01106.2001
        • Glos M
        • Fietze I.
        • Blau A.
        • Baumann G.
        • Penzel T.
        Cardiac autonomic modulation and sleepiness: physiological consequences of sleep deprivation due to 40 h of prolonged wakefulness.
        Physiol Behav. 2014; 125: 45-53https://doi.org/10.1016/j.physbeh.2013.11.011
        • Pagani M
        • Pizzinelli P
        • Traon AP-L
        • et al.
        Hemodynamic, autonomic and barore! Exchanges after one night sleep deprivation in healthy volunteers.
        Auton Neurosci. 2009; 145: 76-80https://doi.org/10.1016/j.autneu.2008.10.009
        • McCrory C
        • Berkman L.F.
        • Nolan H.
        • O'Leary N.
        • Foley M.
        • Kenny R.A.
        Speed of heart rate recovery in response to orthostatic challenge.
        Circ Res. 2016; 119: 666-675https://doi.org/10.1161/CIRCRESAHA.116.308577
        • Mezick EJ
        • Matthews K.A.
        • Hall M.H.
        • Richard Jennings J.
        • Kamarck T.W
        Sleep duration and cardiovascular responses to stress in undergraduate men.
        Psychophysiology. 2014; 51: 88-96https://doi.org/10.1111/psyp.12144
        • Castro-Diehl C
        • Diez Roux A.V.
        • Redline S.
        • et al.
        Sleep duration and quality in relation to autonomic nervous system measures: the multi-ethnic study of atherosclerosis (MESA).
        Sleep. 2016; 39: 1927-1940https://doi.org/10.5665/sleep.6218
        • Eiman MN
        • Pomeroy J.M.L.
        • Weinstein A.A.
        Relationship of actigraphy-assessed sleep efficiency and sleep duration to reactivity to stress.
        Sleep Sci. 2019; 12: 257https://doi.org/10.5935/1984-0063.20190090
        • Cincin A
        • Sari I.
        • Oğuz M.
        • et al.
        Effect of acute sleep deprivation on heart rate recovery in healthy young adults.
        Sleep Breath. 2015; 19: 631-636https://doi.org/10.1007/s11325-014-1066-x
        • Tobaldini E
        • Cogliati C.
        • Fiorelli E.M.
        • et al.
        One night on-call: sleep deprivation affects cardiac autonomic control and inflammation in physicians.
        Eur J Intern Med. 2013; 24: 664-670https://doi.org/10.1016/j.ejim.2013.03.011
        • Scarlett S
        • Nolan H.N.
        • Kenny R.A.
        • O'Connell M.D
        Discrepancies in self-reported and actigraphy-based sleep duration are associated with self-reported insomnia symptoms in community-dwelling older adults.
        Sleep Health. 2021; 7: 83-92https://doi.org/10.1016/j.sleh.2020.06.003
        • Donoghue OA
        • McGarrigle CA
        • Foley M
        • Fagan A
        • Meaney J
        • Kenny RA.
        Cohort profile update: The Irish Longitudinal Study on Ageing (TILDA).
        Int J Epidemiol. 2018; 47: 1398https://doi.org/10.1093/ije/dyy163
        • Soraghan CJ
        • Fan CW
        • Hayakawa T
        • et al.
        TILDA signal processing framework (SPF) for the analysis of BP responses to standing in epidemiological and clinical studies.
        in: Paper presented at: IEEE-EMBS international conference on biomedical and health informatics (BHI). 2014
        • O'Connor JD
        • O'Connell M.D.
        • Nolan H.
        • Newman L.
        • Knight S.P.
        • Kenny R.A
        Impact of standing speed on the peripheral and central hemodynamic response to orthostasis: evidence from the Irish Longitudinal Study on Ageing.
        Hypertension. 2020; 75: 524-531https://doi.org/10.1161/HYPERTENSIONAHA.119.14040
        • Jenkins CA
        • Tiley LCF
        • Lay I
        • Hartmann JA
        • Chan JKM
        • Nicholas CL
        Comparing GENEActiv against Actiwatch-2 over seven nights using a common sleep scoring algorithm and device-specific wake thresholds.
        Behav Sleep Med. 2021; 20: 369-379https://doi.org/10.1080/15402002.2021.1924175
        • Plekhanova T
        • Rowlands A.V.
        • Yates T.
        • et al.
        Equivalency of sleep estimates: comparison of three research-grade accelerometers.
        J Meas Phys Behav. 2020; 3: 294-303
        • Nolan H
        • Dunne L
        • Greene L
        • Cronin H
        Signal processing framework for objective sleep and physical activity measurement using accelerometry in population studies of older adults.
        Age Ageing. 2013; 42: iii15
        • Hirshkowitz M
        • Whiton K.
        • Albert S.M.
        • et al.
        National Sleep Foundation's sleep time duration recommendations: methodology and results summary.
        Sleep Health. 2015; 1: 40-43https://doi.org/10.1016/j.sleh.2014.12.010
        • Mayfield D
        • McLeod G
        • Hall P.
        The CAGE questionnaire: validation of a new alcoholism screening instrument.
        Am J Psychiatry. 1974; 131: 1121-1123https://doi.org/10.1176/ajp.131.10.1121
        • Hagströmer M
        • Oja P
        • Sjöström M.
        The International Physical Activity Questionnaire (IPAQ): a study of concurrent and construct validity.
        Public Health Nutr. 2006; 9: 755-762https://doi.org/10.1079/phn2005898
        • Radloff LS.
        The CES-D scale: a self-report depression scale for research in the general population.
        Appl Psychol Meas. 1977; 1: 385-401https://doi.org/10.1177/014662167700100306
      1. R: A language and environment for statistical computing.
        R Foundation for Statistical Computing, Vienna, Austria2020 ([computer program])
        • Huikuri HV
        • Niemelä M.J.
        • Ojala S.
        • Rantala A.
        • Ikäheimo M.J.
        • Airaksinen K.E.
        Circadian rhythms of frequency domain measures of heart rate variability in healthy subjects and patients with coronary artery disease. Effects of arousal and upright posture.
        Circulation. 1994; 90: 121-126https://doi.org/10.1161/01.CIR.90.1.121
        • Furlan R
        • Guzzetti S.
        • Crivellaro W.
        • et al.
        Continuous 24-hour assessment of the neural regulation of systemic arterial pressure and RR variabilities in ambulant subjects.
        Circulation. 1990; 81: 537-547https://doi.org/10.1161/01.CIR.81.2.537
        • Borst C
        • Wieling W
        • Van Brederode J
        • Hond A
        • De Rijk L
        • Dunning A.
        Mechanisms of initial heart rate response to postural change.
        Am J Physiol Heart Circ Physiol. 1982; 243: H676-H681https://doi.org/10.1152/ajpheart.1982.243.5.H676
        • Van Den Berg JF
        • Van Rooij F.J.
        • Vos H.
        • et al.
        Disagreement between subjective and actigraphic measures of sleep duration in a population-based study of elderly persons.
        J Sleep Res. 2008; 17: 295-302https://doi.org/10.1111/j.1365-2869.2008.00638.x
        • Jarrin DC
        • Ivers H.
        • Lamy M.
        • Chen I.Y.
        • Harvey A.G.
        • Morin C.M.
        Cardiovascular autonomic dysfunction in insomnia patients with objective short sleep duration.
        J Sleep Res. 2018; 27: e12663https://doi.org/10.1111/jsr.12663
        • Landry G
        • Best J.
        • Liu-Ambrose T.
        Measuring sleep quality in older adults: a comparison using subjective and objective methods.
        Front Aging Neurosci. 2015; 7: 1-10https://doi.org/10.3389/fnagi.2015.00166
        • de Zambotti M
        • Covassin N.
        • de Min Tona G
        • Sarlom M.
        • Stegagno L.
        Sleep onset and cardiovascular activity in primary insomnia.
        J Sleep Res. 2011; 2: 318-325https://doi.org/10.1111/j.1365-2869.2010.00871.x
        • Calandra-Buonaura G
        • Provini F.
        • Guaraldi P.
        • Plazzi G.
        • Cortelli P
        Cardiovascular autonomic dysfunctions and sleep disorders.
        Sleep Med Rev. 2016; 26: 43-56https://doi.org/10.1016/j.smrv.2015.05.005
        • Fink AM
        • Bronas U.G.
        • Calik M.W.
        Autonomic regulation during sleep and wakefulness: a review with implications for defining the pathophysiology of neurological disorders.
        Clin Auton Res. 2018; 28: 509-518https://doi.org/10.1007/s10286-018-0560-9
        • Benarroch EE
        • Stotz-Potter EH
        Dysautonomia in fatal familial insomnia as an indicator of the potential role of the thalamus in autonomie control.
        Brain Pathol. 1998; 8: 527-530https://doi.org/10.1111/j.1750-3639.1998.tb00174.x
        • De Looze C
        • Williamson W
        • Hirst R
        • et al.
        Impaired orthostatic heart rate recovery is associated with smaller thalamic volume: results from The Irish Longitudinal Study on Aging (TILDA).
        Hum Brain Mapp. 2020; 41: 3370-3378https://doi.org/10.1002/hbm.25022
        • Whitehurst LN
        • Naji M.
        • Mednick S.C.
        Comparing the cardiac autonomic activity profile of daytime naps and nighttime sleep.
        Neurobiol Sleep Circ Rhythms. 2018; 5: 52-57https://doi.org/10.1016/j.nbscr.2018.03.001
        • Finucane C
        • Savva G.M.
        • Kenny R.A.
        Reliability of orthostatic beat-to-beat blood pressure tests: implications for population and clinical studies.
        Clin Auton Res. 2017; 27: 31-39