Research Article| Volume 6, ISSUE 4, P498-505, August 2020

Evening and night exposure to screens of media devices and its association with subjectively perceived sleep: Should “light hygiene” be given more attention?

Published:March 18, 2020DOI:



      The aim of the study was to examine subjective sleep quality in a population of healthy volunteers and its association with evening and night light exposure to screens of media devices.


      A total of 693 participants (mean age 31.2±11.4 years, 159 men, and 538 women) completed an online questionnaire battery consisting of several sleep-related questionnaires: PSQI, FSS, MCTQ, MEQ, and added questions assessing the timing and character the evening and night exposure to electronical devices (TV, PC, tablets, and phones), and the use of various filters blocking short-wavelength light.


      Statistical analyses show that longer cumulative exposure to screen light in the evening was associated with greater sleep inertia in the morning (P = .019, η2=0.141) and longer sleep latency on workdays P = .038, η2=0.135). Furthermore, exposure to screen light 1.5 h before sleep or during night awakenings was also associated with a decreased chance to wake up before alarm clock (P = .003, d=0.30), larger social jet lag (P < .001, d=0.15), more daytime dysfunction (P < .001, d=0.40), decreased subjective sleep quality (P = .024, d=0.16), and more fatigue (P < .001, d=0.52). A statistical trend for an increase in duration of sleep on weekdays (P = .058, d=0.23) was also found in participants using blue-light filters in the evening hours.


      Our results are in line with other studies that converge to show the negative association of evening and night exposure to short-wavelength light on subjective and objective sleep parameters. Results suggest that light hygiene in general population should be given more attention not only in the context of clinical sleep medicine but also in the realm of public health.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Sleep Health: Journal of the National Sleep Foundation
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Scullin M.K.
        • Bliwise D.L.
        Sleep, Cognition, and Normal Aging: Integrating a Half Century of Multidisciplinary Research.
        Perspect Psychol Sci. 2015; 10: 97-137
        • Patel S.R.
        • Zhu X.
        • Storfer-Isser A.
        • et al.
        Sleep duration and biomarkers of inflammation.
        Sleep. 2009; 32: 200-204
        • Rasch B.
        • Born J.
        About Sleep's Role in Memory.
        Physiol Rev. 2013; 93: 681-766
        • Sharma S.
        • Kavuru M.
        Sleep and metabolism: an overview.
        Int J Endocrinol. 2010; 2010
        • Matricciani L.
        • Bin Y.S.
        • Lallukka T.
        • et al.
        Past, present, and future: trends in sleep duration and implications for public health.
        Sleep Health. 2017; 3: 317-323
        • Nathan N.
        • Zeitzer J.
        A survey study of the association between mobile phone use and daytime sleepiness in California high school students.
        Bmc Public Health. 2013; 13
        • Xanidis N.
        • Brignell C.M.
        The association between the use of social network sites, sleep quality and cognitive function during the day.
        Computers in Human Behavior. 2016; 55: 121-126
        • Exelmans L.
        • Van den Bulck J.
        Bedtime mobile phone use and sleep in adults.
        Soc Sci Med. 2016; 148: 93-101
        • Strasburger V.C.
        • Jordan A.B.
        • Donnerstein E.
        Children, adolescents, and the media: health effects.
        Pediatr Clin N Am. 2012; 59: 533-587.vii
        • Villanti A.C.
        • Johnson A.L.
        • Ilakkuvan V.
        • Jacobs M.A.
        • Graham A.L.
        • Rath J.M.
        Social Media Use and Access to Digital Technology in US Young Adults in 2016.
        J Med Internet Res. 2017; 19: e196
        • Yang J.
        • Yang Q.
        • Mai Z.
        • Zhou X.
        • Ma N.
        Influences of Screen Media Use near Bedtime on Daytime Sleepniess and Self-Satisfaction among College Students: The Mediating Effect of Valid Sleep Time.
        Sleep. 2018; 41 (A76)
        • Brainard G.C.
        • Hanifin J.P.
        • Warfield B.
        • et al.
        Short-wavelength enrichment of polychromatic light enhances human melatonin suppression potency.
        J Pineal Res. 2015; 58: 352-361
        • Cho J.R.
        • Joo E.Y.
        • Koo D.L.
        • Hong S.B.
        Let there be no light: the effect of bedside light on sleep quality and background electroencephalographic rhythms.
        Sleep Med. 2013; 14: 1422-1425
        • Chang A.M.
        • Aeschbach D.
        • Duffy J.F.
        • Czeisler C.A.
        Evening use of light-emitting eReaders negatively affects sleep, circadian timing, and next-morning alertness.
        Proc Natl Acad Sci U S A. 2015; 112: 1232-1237
        • Chellappa S.L.
        • Steiner R.
        • Oelhafen P.
        • et al.
        Acute exposure to evening blue-enriched light impacts on human sleep.
        J Sleep Res. 2013; 22: 573-580
        • Higuchi S.
        • Motohashi Y.
        • Liu Y.
        • Ahara M.
        • Kaneko Y.
        Effects of VDT tasks with a bright display at night on melatonin, core temperature, heart rate, and sleepiness.
        J Appl Physiol. 2003; 94: 1773-1776
        • Sroykham W.
        • Wongsawat Y.
        Effects of LED-backlit Computer Screen and Emotional Self-regulation on Human Melatonin Production.
        Ieee Eng Med Bio. 2013; : 1704-1707
        • Rahman S.A.
        • Flynn-Evans E.E.
        • Aeschbach D.
        • Brainard G.C.
        • Czeisler C.A.
        • Lockley S.W.
        Diurnal spectral sensitivity of the acute alerting effects of light.
        Sleep. 2014; 37: 271-281
        • Cajochen C.
        • Frey S.
        • Anders D.
        • et al.
        Evening exposure to a light-emitting diodes (LED)-backlit computer screen affects circadian physiology and cognitive performance.
        J Appl Physiol. 2011; 110: 1432-1438
        • Rodriguez-Morilla B.
        • Madrid J.A.
        • Molina E.
        • Correa A.
        Blue-Enriched White Light Enhances Physiological Arousal But Not Behavioral Performance during Simulated Driving at Early Night.
        Front Psychol. 2017; 8: 997
        • Vandewalle G.
        • Maquet P.
        • Dijk D.J.
        Light as a modulator of cognitive brain function.
        Trends Cogn Sci. 2009; 13: 429-438
        • Gaggioni G.
        • Maquet P.
        • Schmidt C.
        • Dijk D.J.
        • Vandewalle G.
        Neuroimaging, cognition, light and circadian rhythms.
        Front Syst Neurosci. 2014; 8: 126
        • Slama H.
        • Deliens G.
        • Schmitz R.
        • Peigneux P.
        • Leproult R.
        Afternoon Nap and Bright Light Exposure Improve Cognitive Flexibility Post Lunch.
        PLos One. 2015; 10
        • Smotek M.
        • Vlcek P.
        • Saifutdinova E.
        • Koprivova J.
        Objective and Subjective Characteristics of Vigilance under Different Narrow-Bandwidth Light Conditions: Do Shorter Wavelengths Have an Alertness-Enhancing Effect?.
        Neuropsychobiology. 2019; 78: 238-248
        • Gradisar M.
        • Wolfson A.R.
        • Harvey A.G.
        • Hale L.
        • Rosenberg R.
        • Czeisler C.A.
        The sleep and technology use of Americans: findings from the National Sleep Foundation's 2011 Sleep in America poll.
        J Clin Sleep Med. 2013; 9: 1291-1299
        • Kubiszewski V.
        • Fontaine R.
        • Rusch E.
        • Hazouard E.
        Association between electronic media use and sleep habits: an eight-day follow-up study.
        Int J Adolesc Youth. 2013; 19: 395-407
        • Morin C.M.
        • Bootzin R.R.
        • Buysse D.J.
        • Edinger J.D.
        • Espie C.A.
        • Lichstein K.L.
        Psychological and behavioral treatment of insomnia: Update of the recent evidence (1998-2004).
        Sleep. 2006; 29: 1398-1414
        • Irish L.A.
        • Kline C.E.
        • Gunn H.E.
        • Buysse D.J.
        • Hall M.H.
        The role of sleep hygiene in promoting public health: A review of empirical evidence.
        Sleep Med Rev. 2015; 22: 23-36
        • Lawrenson J.G.
        • Hull C.C.
        • Downie L.E.
        The effect of blue-light blocking spectacle lenses on visual performance, macular health and the sleep-wake cycle: asystematic review of the literature.
        Ophthal Physl Opt. 2017; 37: 644-654
        • Perez Algorta G.
        • Van Meter A.
        • Dubicka B.
        • Jones S.
        • Youngstrom E.
        • Lobban F.
        Blue blocking glasses worn at night in first year higher education students with sleep complaints: a feasibility study.
        Pilot Feasibility Stud. 2018; 4: 166
        • Burkhart K.
        • Phelps J.R.
        Amber lenses to block blue light and improve sleep: a randomized trial.
        Chronobiol Int. 2009; 26: 1602-1612
        • Sasseville A.
        • Hebert M.
        Using blue-green light at night and blue-blockers during the day to improves adaptation to night work: a pilot study.
        Prog Neuropsychopharmacol Biol Psychiatry. 2010; 34: 1236-1242
        • van der Lely S.
        • Frey S.
        • Garbazza C.
        • et al.
        Blue blocker glasses as a countermeasure for alerting effects of evening light-emitting diode screen exposure in male teenagers.
        J Adolesc Health. 2015; 56: 113-119
        • Ayaki M.
        • Hattori A.
        • Maruyama Y.
        • et al.
        Protective effect of blue-light shield eyewear for adults against light pollution from self-luminous devices used at night.
        Chronobiol Int. 2016; 33: 134-139
        • Heo J.Y.
        • Kim K.
        • Fava M.
        • et al.
        Effects of smartphone use with and without blue light at night in healthy adults: A randomized, double-blind, cross-over, placebo-controlled comparison.
        J Psychiatr Res. 2017; 87: 61-70
        • Zimmerman M.E.
        • Kim M.B.
        • Hale C.
        • Westwood A.J.
        • Brickman A.M.
        • Shechter A.
        Neuropsychological Function Response to Nocturnal Blue Light Blockage in Individuals With Symptoms of Insomnia: A Pilot Randomized Controlled Study.
        J Int Neuropsychol Soc. 2019; 25: 668-677
        • Bennett S.
        • Alpert M.
        • Kubulins V.
        • Hansler R.L.
        Use of modified spectacles and light bulbs to block blue light at night may prevent postpartum depression.
        Med Hypotheses. 2009; 73: 251-253
        • Henriksen T.E.
        • Skrede S.
        • Fasmer O.B.
        • et al.
        Blue-blocking glasses as additive treatment for mania: a randomized placebo-controlled trial.
        Bipolar Disord. 2016; 18: 221-232
        • Esaki Y.
        • Kitajima T.
        • Takeuchi I.
        • et al.
        Effect of blue-blocking glasses in major depressive disorder with sleep onset insomnia: A randomized, double-blind, placebo-controlled study.
        Chronobiol Int. 2017; 34: 753-761
        • Shechter A.
        • Kim E.W.
        • St-Onge M.P.
        • Westwood A.J.
        Blocking nocturnal blue light for insomnia: A randomized controlled trial.
        J Psychiatr Res. 2018; 96: 196-202
        • Heath M.
        • Sutherland C.
        • Bartel K.
        • et al.
        Does one hour of bright or short-wavelength filtered tablet screenlight have a meaningful effect on adolescents ' pre-bedtime alertness, sleep, and daytime functioning?.
        Chronobiol Int. 2014; 31: 496-505
        • Erren T.C.
        • Reiter R.J.
        Light Hygiene: Time to make preventive use of insights–old and new–into the nexus of the drug light, melatonin, clocks, chronodisruption and public health.
        Med Hypotheses. 2009; 73: 537-541
        • Shen J.
        • Barbera J.
        • Shapiro C.M.
        Distinguishing sleepiness and fatigue: focus on definition and measurement.
        Sleep Med Rev. 2006; 10: 63-76
        • Buysse D.J.
        • Reynolds 3rd, C.F.
        • Monk T.H.
        • Berman S.R.
        • Kupfer D.J.
        The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research.
        Psychiatry Res. 1989; 28: 193-213
        • Urbaczka Dudysová D.
        • Fárková E.
        • Novák J.
        • et al.
        Reliability and validity of the Czech version of the Pittsburgh Sleep Quality Index in sleep disorders and healthy controls. Unpublished manuscript.
        • Krupp L.B.
        • LaRocca N.G.
        • Muir-Nash J.
        • Steinberg A.D.
        The fatigue severity scale. Application to patients with multiple sclerosis and systemic lupus erythematosus.
        Arch Neurol. 1989; 46: 1121-1123
        • Lerdal A.
        • Wahl A.
        • Rustoen T.
        • Hanestad B.R.
        • Moum T.
        Fatigue in the general population: a translation and test of the psychometric properties of the Norwegian version of the fatigue severity scale.
        Scand J Public Health. 2005; 33: 123-130
        • Horne J.A.
        • Ostberg O.
        A self-assessment questionnaire to determine morningness-eveningness in human circadian rhythms.
        Int J Chronobiol. 1976; 4: 97-110
        • Caci H.
        • Adan A.
        • Bohle P.
        • Natale V.
        • Pornpitakpan C.
        • Tilley A.
        Transcultural properties of the composite scale of morningness: the relevance of the “morning affect” factor.
        Chronobiol Int. 2005; 22: 523-540
        • Caci H.
        • Deschaux O.
        • Adan A.
        • Natale V.
        Comparing three morningness scales: age and gender effects, structure and cut-off criteria.
        Sleep Med. 2009; 10: 240-245
        • Plháková A.
        • Dostál D.
        • Manková D.
        Circadian preferences in relation to depression, subjective sleep quality and Cloninger's personality dimensions.
        Ceska a Slovenska Psychiatrie. 2013; 109: 107-114
        • Roenneberg T.
        • Wirz-Justice A.
        • Merrow M.
        Life between clocks: Daily temporal patterns of human chronotypes.
        J Biol Rhythm. 2003; 18: 80-90
        • Zavada A.
        • Gordijn M.C.
        • Beersma D.G.
        • Daan S.
        • Roenneberg T.
        Comparison of the Munich Chronotype Questionnaire with the Horne-Ostberg's Morningness-Eveningness Score.
        Chronobiol Int. 2005; 22: 267-278
        • Santisteban J.A.
        • Brown T.G.
        • Gruber R.
        Association between the Munich Chronotype Questionnaire and Wrist Actigraphy.
        Sleep Disord. 2018; 2018: 5646848
        • Exelmans L.
        • Van den Bulck J.
        Bedtime, shuteye time and electronic media: sleep displacement is a two-step process.
        J Sleep Res. 2017; 26: 364-370
        • Johansson A.E.
        • Petrisko M.A.
        • Chasens E.R.
        Adolescent Sleep and the Impact of Technology Use Before Sleep on Daytime Function.
        J Pediatr Nurs. 2016; 31: 498-504
        • Becker S.P.
        • Lienesch J.A.
        Nighttime media use in adolescents with ADHD: links to sleep problems and internalizing symptoms.
        Sleep Medicine. 2018; 51: 171-178
        • Bhat S.
        • Pinto-Zipp G.
        • Upadhyay H.
        • Polos P.G.
        “To sleep, perchance to tweet”: in-bed electronic social media use and its associations with insomnia, daytime sleepiness, mood, and sleep duration in adults.
        Sleep Health. 2018; 4: 166-173
        • Woods H.C.
        • Scott H.
        #Sleepyteens: Social media use in adolescence is associated with poor sleep quality, anxiety, depression and low self-esteem.
        J Adolesc. 2016; 51: 41-49
        • Krystal A.D.
        Psychiatric disorders and sleep.
        Neurol Clin. 2012; 30: 1389-1413
        • Faul F.
        • Erdfelder E.
        • Lang A.G.
        • Buchner A.
        G∗Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences.
        Behav Res Methods. 2007; 39: 175-191
        • Chinoy E.D.
        • Duffy J.F.
        • Czeisler C.A.
        Unrestricted evening use of light-emitting tablet computers delays self-selected bedtime and disrupts circadian timing and alertness.
        Physiol Rep. 2018; 6: e13692
        • Green A.
        • Cohen-Zion M.
        • Haim A.
        • Dagan Y.
        Evening light exposure to computer screens disrupts human sleep, biological rhythms, and attention abilities.
        Chronobiol Int. 2017; 34: 855-865
        • Christensen M.A.
        • Bettencourt L.
        • Kaye L.
        • et al.
        Direct Measurements of Smartphone Screen-Time: Relationships with Demographics and Sleep.
        PLoS One. 2016; 11: e0165331
        • Keijzer H.
        • Smits M.G.
        • Duffy J.F.
        • Curfs L.M.
        Why the dim light melatonin onset (DLMO) should be measured before treatment of patients with circadian rhythm sleep disorders.
        Sleep Med Rev. 2014; 18: 333-339
        • Wams E.J.
        • Woelders T.
        • Marring I.
        • et al.
        Linking Light Exposure and Subsequent Sleep: A Field Polysomnography Study in Humans.
        Sleep. 2017; 40
        • Thomee S.
        • Harenstam A.
        • Hagberg M.
        Mobile phone use and stress, sleep disturbances, and symptoms of depression among young adults - a prospective cohort study.
        Bmc Public Health. 2011; 11
        • Exelmans L.
        • Van den Bulck J.
        Binge Viewing, Sleep, and the Role of Pre-Sleep Arousal.
        J Clin Sleep Med. 2017; 13: 1001-1008
        • Arora T.
        • Broglia E.
        • Thomas G.N.
        • Taheri S.
        Associations between specific technologies and adolescent sleep quantity, sleep quality, and parasomnias.
        Sleep Med. 2014; 15: 240-247
        • Choi K.
        • Son H.
        • Park M.
        • et al.
        Internet overuse and excessive daytime sleepiness in adolescents.
        Psychiat Clin Neuros. 2009; 63: 455-462
        • Vandewalle G.
        • Schmidt C.
        • Albouy G.
        • et al.
        Brain responses to violet, blue, and green monochromatic light exposures in humans: prominent role of blue light and the brainstem.
        PLoS One. 2007; 2: e1247
        • Kuss D.J.
        • Griffiths M.D.
        Social Networking Sites and Addiction: Ten Lessons Learned.
        Int J Env Res Pub He. 2017; 14
        • Riemann D.
        • Baglioni C.
        • Bassetti C.
        • et al.
        European guideline for the diagnosis and treatment of insomnia.
        J Sleep Res. 2017; 26: 675-700
        • Polos P.G.
        • Bhat S.
        • Gupta D.
        • et al.
        The impact of Sleep Time-Related Information and Communication Technology (STRICT) on sleep patterns and daytime functioning in American adolescents.
        J Adolesc. 2015; 44: 232-244
        • Knufinke M.
        • Fittkau-Koch L.
        • Most E.I.S.
        • Kompier M.A.J.
        • Nieuwenhuys A.
        Restricting short-wavelength light in the evening to improve sleep in recreational athletes - A pilot study.
        Eur J Sport Sci. 2018; : 1-8
        • Janků K.
        • Šmotek M.
        • Fárková E.
        • Kopřivová J.
        Block the light and sleep well: Evening blue light filtration as a part of cognitive behavioral therapy for insomnia.
        Chronobiol Int. 2020; 37: 248-259
        • Roenneberg T.
        • Pilz L.K.
        • Zerbini G.
        • Winnebeck E.C.
        Chronotype and Social Jetlag: A (Self-) Critical Review.
        Biology (Basel). 2019; 8
        • Martin J.S.
        • Hebert M.
        • Ledoux E.
        • Gaudreault M.
        • Laberge L.
        Relationship of chronotype to sleep, light exposure, and work-related fatigue in student workers.
        Chronobiol Int. 2012; 29: 295-304
        • Porcheret K.
        • Wald L.
        • Fritschi L.
        • et al.
        Chronotype and environmental light exposure in a student population.
        Chronobiol Int. 2018; 35: 1365-1374
        • Refinetti R.
        Chronotype Variability and Patterns of Light Exposure of a Large Cohort of United States Residents.
        Yale J Biol Med. 2019; 92: 179-186
        • Bowler J.
        • Bourke P.
        Facebook use and sleep quality: Light interacts with socially induced alertness.
        Br J Psychol. 2018;
        • Wood B.
        • Rea M.S.
        • Plitnick B.
        • Figueiro M.G.
        Light level and duration of exposure determine the impact of self-luminous tablets on melatonin suppression.
        Appl Ergon. 2013; 44: 237-240
        • Rangtell F.H.
        • Ekstrand E.
        • Rapp L.
        • et al.
        Two hours of evening reading on a self-luminous tablet vs. reading a physical book does not alter sleep after daytime bright light exposure.
        Sleep Med. 2016; 23: 111-118